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Mesoscopics and fluctuations in networks
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We describe fluctuations in finite-size networks with a complex distribution of conneck¢k}, We show
that the spectrum of fluctuations of the number of vertices with a given degree is Poissonian. These mesoscopic
fluctuations are strong in the large-degree region, wik{ie<1/N (N is the total number of vertices in a
network, and are important in networks with fat-tailed degree distributions.
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Fluctuations in finite systems, which vanish in the infinite P(N(k)). In particular, the first moment of this distribution
system limit, is a basic topic of mesoscopic physics. Theprovides the degree distributiofM(k))=NP(k). So, study-
study of these fluctuations is an exciting field of condensedng only one member of the ensemble, or a few, one can find
matter physic$1,2], where small objects attract much atten- the degree distribution only approximately.
tion. There is a specific network construction, where fluctua-

Despite the fast recent progress in the statistical physicgons of N(k) are absent by definition. These are so called
of networks[3-7], the finite-size effects in networks are sur- “|abeled random graphs with a given degree sequefit8!
prisingly poorly studied. However, real networks, as a rulefrom graph theory, which are, loosely speaking, the maxi-
are small objects, and their finiteness is a factor of primarymally random graphs with a given sequen¢bl(k)},
importance. Impressive results obtained for infinite nets ofs,N(k)=N. Consequently, in this situation,P(k)
ten turn out to be incorrect if we take into account the finite—:N(k)/N. These graphs are extensively used in numerous
ness of networkssee detailed discussion in Reff6,7]). For  applicationg14—17, and, of course, the absence of fluctua-
example, the absolute random-damage stability of infinitajons is related only to theiN(k). Therefore this is an ex-
networks with fat-tailed degree distributions and the absencgeption.
of an epidemic threshold in these nétisat is, their absolute Here we study fluctuations in the dynamically constructed
disease vulnerabilifyvanish in finite-size networkis]. networks that are equivalent to the random graphs with a

The finiteness of networks with fat-tailed degree distribu-given degree sequence in the thermodynamic limit, where
tions cuts off the tails of the degree distributiofsee, e.g., fluctuations vanish. Let us consider an equilibrium random
Refs.[9-11)). In this paper we consider another mesoscopigietwork with a fixed number of verticés in which all ver-
effect that is clearly observable in empirical data. We de+jces are statistically independent. We assume that a full set
scribe fluctuations of the number of verticBgk) with a  of probabilities{P(k)},k=0,1,2 .. ., is given [P(k) is the
given number of connectiorlsin a network .k is called de-  probability that a vertex has degrég but the total number
gree, or, not quite rigorously, connectivity of a vertex. We of edges in particular members of this ensemble is not fixed.
consider a simple equilibrium situation, where the total num-Taking into account the statistical independence of vertices
bers of verticedN and edges. in a network are constant, and we arrive at a standard combinatorial problem. So, the prob-
comment a more complex case of fluctuations in growingabnity that a sequencEN(k)} [2 N(k)=N] is realized in a

networks(see calculations in Ref10]). member of the ensemble has the following form:
Our general results are formulated as follows: for &ny
the fluctuations oN(k) are described by the Poisson distri- [P(k)JNG
bution. These fluctuations are of primary importance in the P({N(k)})ZN!I_k[ TN (1)

large-degree range, where the averdgék))=<1.

A random network is, actually, a statistical ensem@le
that includes numerous membegs G [11,12. These are
different particular realizations of the network. Each membe
g enters into the ensemble with its statistical weibhty).

When empirical researchers study a single realization of
an ensemble, they measWék), i.e., the number of vertices P(N(k)):(
of a degreek in this realization. If they have a possibility to

investigate the complete ensemble, they can obtain the dis- o . )
tribution of the fluctuations ofN(k) at any k, that is, This form, for sufficiently large networks, results in the Pois-

son spectrum of the fluctuations:

This is a polynomial distribution from which the binomial
IIorm of the distribution of the numbeid(k) [the fluctuation
spectrum ofN(k)] directly follows:

N

N(k))P<k>N<k>[1—P<k>]N-N<k>. @

N(k
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which in turn approaches the Gaussian form

1 exp[_ [N(k)—(N(K))]2
V27(N(K)) 2(N(k)) ’

when (N(k))>1 [or P(k)>1/N] while the ratio [N(k)
—(N(k))1/V{N(K)) is fixed, that is, when relative fluctua-
tions are small. Note that these general results are valid both
for directed and undirected networks.

Now, let the numbeL of edges in the realizations of an
ensemble be fixed. In this event, the combinatorics at fi¥ite
turns out to be slightly more complex, and we use a more
convenient approach for sufficiently large networks. We con-
sider fluctuations in the dynamically constructed equilibrium  FiG. 1. Typical(schematit log-log plot of the numbeN(k) of
networks(with the fixed number of vertices and edpéisat  vertices of degred in a scale-free networkone realization 7y is
are equivalent to the above networks with a fixedand to  the exponent of the degree distribution. The fluctuations are obser-
the random graphs with a given degree sequgincthe ther-  vable in the region (3/)In N<In k<[1/(y—1)]In N.
modynamic limit, where fluctuations vanish. Let us remind

P(N(k))= (4)

In N(k)

(1) mN [1/(7—'1)] InN Ink

the construction and a standard statistical mechanics formal- Ca(k, k)= (N(K)N(K")) = (N(K))(N(K"))
ism [12] which allows easy calculation of averages.
(1) The ensemble includes all graphs with a given number 5%In Z[{p(?)},N,L]
of vertices,N, and edgesl.. = —, 8
(2) The stationary statistical weights of the realizations dInp(k)dinp(k’)
are a limiting result of the following process. Random ends . )
of randomly chosen edges are rewired to preferentially chond S0 on for the higher cumulan@,(ky, . .. kn) which
sen vertices at a rati(k;), where the rate depends on the €ontain higher order products bf(k). ,
degreek; of a target vertex. Substituting Eqs(6) and (7) into Eq. (8) readily shows

. — _ the following at sufficiently largeN, when(N(k))<N.
The functionf(k) and the mean degrde=2L/N deter (1) C(Ky, ... k) is nonzero only ifk,=k,= - - - =k,

mine the structure of this random netwo(tkor brevity, here . . '
. . . so there is no correlation between numbers of vertices of
we consider undirected networks and do not discuss multiz,.
o o . different degrees.
plication of edges. This will not influence our result¥he @ All the cumulants are equalC,_(k)=Cy(K)
resulting statistical weights in this ensemble are products_ qualtn=1 1

N =(N(k))=NP(k).
1(g) =11~ p(ki), where The latter is the characteristic property of the Poisson dis-

tribution. Consequently, the spectrum of the fluctuations of

N(K) is Poissonian, and we again arrive at the same expres-
p(k>0)=ql;[0 f(a), p(0)=1. ®)  sions (3) and (4) as for networks with fluctuatind.. This
universal result does not depend on the specific parameters
of the model which can be easily generalized.

The fluctuations ofN(k) vanish in the thermodynamic
limit if k is fixed. On the other hand, the fluctuations are
. strong in the region of large degrees whékgk))=<1, that

~ is, P(k)<1/N. The conditionP(k,,)=1/N determines the
Z[{p(k)},N,L]~<&> [D(xo)]", (6) lower boundaryk,, of this region. The position of the cutoff
of the fat-tailed degree distribution may depend on many
factors. In general terms, the maximum possible degree of
the cutoffk; is determined by the finite size of the network:
focdkPw(k)~1, whereP, (k) is the degree distribution of

D(x)=D, Lk)xk1 (7)  the corresponding infinite netwotkote the discussion of the

k! complex problem of the cutoff position in RéL1]). k. is an
estimate of the maximum vertex degree in a network and so
is the upper boundary of the region, where the strong fluc-
tuations are observable. In so-called scale-free networks,
whereP,(k)ock™?, the strong fluctuations should be seen in
the broad region (3)INnN<Ink<[1l/(y—1)]InN (see

k-1

At large N, the asymptotic expression for the partition func-
tion Z=%,_sll(g) of the ensemble is

where

andx, is given by the equatioR=x®' (xs)/P(Xs).
With this partition function, the following standard statis-
tical mechanics relations are valid:

~ Fig. 1.
c (k)=(N(k)>=5|n Z[{p(k)},N,L] One should note that in equilibrium networks, the fat-
. sInp(k) ' tailed regime can be realized only starting from some thresh-
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old value of the mean degr¢é&2]. Below this threshold, a In summary, we have shown that the fluctuation spectrum
size-independent cutoff of the degree distribution sharplyof the number of vertices of a given degree is Poissonian in
narrows the region of strong fluctuations. equilibrium networks. These fluctuations are a prominent
The Poisson spectrum of fluctuations k) in equilib- ~ mesoscopic effect and are seen in the large-degree region of
rium networks is a natural consequence of the statistical inempirical degree distributions. As a rule, empirical research-
dependence of their vertices. In models of growing networkrs try to avoid fluctuations by passing to cumulative distri-
(e.g., see Refd18-20), the fluctuations oN(k) were cal- butlpns. But fluctuations are interesting, and the simple fluc-
culated only in a small degree region and were found to b&uations ofN(k) that we have considered are only a very
Gaussiar{10]. The interesting region of strong fluctuations Particular type of fluctuations in networks. We hope to attract
in growing netsiand in the Simon modé1]) is not studied the attention of empirical researches to this problem.
yet. Although the problem is open, we suggest that the com- S.N.D. was partially supported by the project POCTI/
plete fluctuation spectrum of growing networks does not dif-1999/FIS/33141. A.N.S. thanks the NATO program OUT-
fer essentially from the spectrum of the fluctuations in equi-REACH for support. Special thanks go to the Centro de Fi
librium networks. sica do Porto and J.F.F. Mendes.
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