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Mesoscopics and fluctuations in networks
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We describe fluctuations in finite-size networks with a complex distribution of connections,P(k). We show
that the spectrum of fluctuations of the number of vertices with a given degree is Poissonian. These mesoscopic
fluctuations are strong in the large-degree region, whereP(k)&1/N (N is the total number of vertices in a
network!, and are important in networks with fat-tailed degree distributions.
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Fluctuations in finite systems, which vanish in the infin
system limit, is a basic topic of mesoscopic physics. T
study of these fluctuations is an exciting field of conden
matter physics@1,2#, where small objects attract much atte
tion.

Despite the fast recent progress in the statistical phy
of networks@3–7#, the finite-size effects in networks are su
prisingly poorly studied. However, real networks, as a ru
are small objects, and their finiteness is a factor of prim
importance. Impressive results obtained for infinite nets
ten turn out to be incorrect if we take into account the fini
ness of networks~see detailed discussion in Refs.@6,7#!. For
example, the absolute random-damage stability of infin
networks with fat-tailed degree distributions and the abse
of an epidemic threshold in these nets~that is, their absolute
disease vulnerability! vanish in finite-size networks@8#.

The finiteness of networks with fat-tailed degree distrib
tions cuts off the tails of the degree distributions~see, e.g.,
Refs.@9–11#!. In this paper we consider another mesosco
effect that is clearly observable in empirical data. We d
scribe fluctuations of the number of verticesN(k) with a
given number of connectionsk in a network.k is called de-
gree, or, not quite rigorously, connectivity of a vertex. W
consider a simple equilibrium situation, where the total nu
bers of verticesN and edgesL in a network are constant, an
comment a more complex case of fluctuations in grow
networks~see calculations in Ref.@10#!.

Our general results are formulated as follows: for anyk,
the fluctuations ofN(k) are described by the Poisson dist
bution. These fluctuations are of primary importance in
large-degree range, where the average^N(k)&&1.

A random network is, actually, a statistical ensembleG
that includes numerous membersgPG @11,12#. These are
different particular realizations of the network. Each mem
g enters into the ensemble with its statistical weightP(g).

When empirical researchers study a single realization
an ensemble, they measureN(k), i.e., the number of vertice
of a degreek in this realization. If they have a possibility t
investigate the complete ensemble, they can obtain the
tribution of the fluctuations ofN(k) at any k, that is,
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P„N(k)…. In particular, the first moment of this distributio
provides the degree distribution:^N(k)&5NP(k). So, study-
ing only one member of the ensemble, or a few, one can
the degree distribution only approximately.

There is a specific network construction, where fluctu
tions of N(k) are absent by definition. These are so cal
‘‘labeled random graphs with a given degree sequence’’@13#
from graph theory, which are, loosely speaking, the ma
mally random graphs with a given sequence$N(k)%,
(kN(k)5N. Consequently, in this situation,P(k)
5N(k)/N. These graphs are extensively used in numer
applications@14–17#, and, of course, the absence of fluctu
tions is related only to theirN(k). Therefore this is an ex-
ception.

Here we study fluctuations in the dynamically construc
networks that are equivalent to the random graphs wit
given degree sequence in the thermodynamic limit, wh
fluctuations vanish. Let us consider an equilibrium rand
network with a fixed number of verticesN in which all ver-
tices are statistically independent. We assume that a full
of probabilities$P(k)%,k50,1,2, . . . , is given @P~k! is the
probability that a vertex has degreek#, but the total number
of edges in particular members of this ensemble is not fix
Taking into account the statistical independence of verti
we arrive at a standard combinatorial problem. So, the pr
ability that a sequence$N(k)% @(kN(k)5N# is realized in a
member of the ensemble has the following form:

P„$N~k!%…5N!)
k

@P~k!#N(k)

N~k!!
. ~1!

This is a polynomial distribution from which the binomia
form of the distribution of the numbersN(k) @the fluctuation
spectrum ofN(k)] directly follows:

P„N~k!…5S N
N~k! D P~k!N(k)@12P~k!#N2N(k). ~2!

This form, for sufficiently large networks, results in the Po
son spectrum of the fluctuations:

P„N~k!…5e2^N(k)&
^N~k!&N(k)

N~k!!
, ~3!
©2003 The American Physical Society03-1
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which in turn approaches the Gaussian form

P„N~k!…>
1

A2p^N~k!&
expH 2

@N~k!2^N~k!&#2

2^N~k!& J , ~4!

when ^N(k)&@1 @or P(k)@1/N] while the ratio @N(k)
2^N(k)&#/A^N(k)& is fixed, that is, when relative fluctua
tions are small. Note that these general results are valid
for directed and undirected networks.

Now, let the numberL of edges in the realizations of a
ensemble be fixed. In this event, the combinatorics at finitN
turns out to be slightly more complex, and we use a m
convenient approach for sufficiently large networks. We c
sider fluctuations in the dynamically constructed equilibriu
networks~with the fixed number of vertices and edges! that
are equivalent to the above networks with a fixedL ~and to
the random graphs with a given degree sequence! in the ther-
modynamic limit, where fluctuations vanish. Let us remi
the construction and a standard statistical mechanics for
ism @12# which allows easy calculation of averages.

~1! The ensemble includes all graphs with a given num
of vertices,N, and edges,L.

~2! The stationary statistical weights of the realizatio
are a limiting result of the following process. Random en
of randomly chosen edges are rewired to preferentially c
sen vertices at a ratef (ki), where the rate depends on th
degreeki of a target vertex.

The function f (k) and the mean degreek̄52L/N deter-
mine the structure of this random network.~For brevity, here
we consider undirected networks and do not discuss m
plication of edges. This will not influence our results.! The
resulting statistical weights in this ensemble are produ
P(g)}) i 51

N p(ki), where

p~k.0!5 )
q50

k21

f ~q!, p~0!51. ~5!

At large N, the asymptotic expression for the partition fun
tion Z5(gPGP(g) of the ensemble is

Z@$p~ k̃!%,N,L#;S k̄

exs
2D L

@F~xs!#
N, ~6!

where

F~x!5(
k

p~k!

k!
xk, ~7!

andxs is given by the equationk̄5xsF8(xs)/F(xs).
With this partition function, the following standard stati

tical mechanics relations are valid:

C1~k!5^N~k!&5
d ln Z@$p~ k̃!%,N,L#

d ln p~k!
,
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C2~k,k8!5^N~k!N~k8!&2^N~k!&^N~k8!&

5
d2ln Z@$p~ k̃!%,N,L#

d ln p~k!d ln p~k8!
, ~8!

and so on for the higher cumulantsCn(k1 , . . . ,kn) which
contain higher order products ofN(k).

Substituting Eqs.~6! and ~7! into Eq. ~8! readily shows
the following at sufficiently largeN, when^N(k)&!N.

~1! Cn(k1 , . . . ,kn) is nonzero only ifk15k25•••5kn ,
so there is no correlation between numbers of vertices
different degrees.

~2! All the cumulants are equal:Cn>1(k)5C1(k)
5^N(k)&5NP(k).

The latter is the characteristic property of the Poisson d
tribution. Consequently, the spectrum of the fluctuations
N(k) is Poissonian, and we again arrive at the same exp
sions ~3! and ~4! as for networks with fluctuatingL. This
universal result does not depend on the specific parame
of the model which can be easily generalized.

The fluctuations ofN(k) vanish in the thermodynamic
limit if k is fixed. On the other hand, the fluctuations a
strong in the region of large degrees where^N(k)&&1, that
is, P(k)&1/N. The conditionP(km)51/N determines the
lower boundarykm of this region. The position of the cutof
of the fat-tailed degree distribution may depend on ma
factors. In general terms, the maximum possible degree
the cutoffkc is determined by the finite size of the networ
N*kc

` dkP`(k);1, whereP`(k) is the degree distribution o

the corresponding infinite network~note the discussion of the
complex problem of the cutoff position in Ref.@11#!. kc is an
estimate of the maximum vertex degree in a network and
is the upper boundary of the region, where the strong fl
tuations are observable. In so-called scale-free netwo
whereP`(k)}k2g, the strong fluctuations should be seen
the broad region (1/g)ln N&ln k&@1/(g21)# ln N ~see
Fig. 1!.

One should note that in equilibrium networks, the fa
tailed regime can be realized only starting from some thre

FIG. 1. Typical~schematic! log-log plot of the numberN(k) of
vertices of degreek in a scale-free network~one realization!. g is
the exponent of the degree distribution. The fluctuations are ob
vable in the region (1/g)ln N&ln k&@1/(g21)# ln N.
3-2
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old value of the mean degree@12#. Below this threshold, a
size-independent cutoff of the degree distribution shar
narrows the region of strong fluctuations.

The Poisson spectrum of fluctuations ofN(k) in equilib-
rium networks is a natural consequence of the statistica
dependence of their vertices. In models of growing netwo
~e.g., see Refs.@18–20#!, the fluctuations ofN(k) were cal-
culated only in a small degree region and were found to
Gaussian@10#. The interesting region of strong fluctuation
in growing nets~and in the Simon model@21#! is not studied
yet. Although the problem is open, we suggest that the c
plete fluctuation spectrum of growing networks does not d
fer essentially from the spectrum of the fluctuations in eq
librium networks.
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In summary, we have shown that the fluctuation spectr
of the number of vertices of a given degree is Poissonian
equilibrium networks. These fluctuations are a promin
mesoscopic effect and are seen in the large-degree regio
empirical degree distributions. As a rule, empirical resear
ers try to avoid fluctuations by passing to cumulative dis
butions. But fluctuations are interesting, and the simple fl
tuations ofN(k) that we have considered are only a ve
particular type of fluctuations in networks. We hope to attr
the attention of empirical researches to this problem.
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